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ABSTRACT 

This paper gives a necessary and sufficient condition that the ring of invariants 
of every group of automorphisms of every projective, separable, commutative 
algebra over a given commutative ring is itself a union of separable, projective 
suba!gebras. Rings satisfying the condition include products of connected rings, 
yon Neumann regular rings, and some rings of functions. 

Let R be a commutative ring and S a commutative, separable R-algebra, finitely 

generated and projective as an R-module (that is, S is a strongly separable 
R-algebra). Let G be a group of R-algebra automorphisms of S, and consider the 

ring S G of elements of S invariant under G. This paper studies the separability 

properties that S ~ inherits from S. 

If G is finite, by [4, (0.9), p. 709], S ~ is a separable R-algebra, and if R has only 

finitely many idempotents then by [-9, (1.3), p. 723] G must be finite. Thus we are 

mainly concerned with the case where R has infinitely many idempotents, and we 

are looking for a necessary and sufficient condition on R such that for every S 

and G as above, S ~ is a direct limit of strongly separable subalgebras, that is, a 

locally strongly separable algebra. 

The condition, stated in Theorem 22, is essentially that the Pierce sheaf [7, (4.4), 

p. 17] of every strongly separable R-algebra is a Hausdorff topological space. We 

do not deal explicitly with the Pierce sheaf here, however, but with the purely 

algebraic description of it given in [10]; the forementioned condition will also be 

phrased purely algebraically. 

We use the conventions of [5] throughout: all rings and algebras are com- 

mutative, with R the generic base ring. X(R) is the space of connected components 
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of Spec (R); elements of  X ( R )  are maximal ideals in the Boolean ring of idempotents 

of  R and the basic open-closed sets of  X(R) are the sets N(e)  = {x ~ X(R): 1 - e ~ x),  

where e is an idempotent of  R. I f  x ~ X ( R )  and M is an R-module, M x = M / M x ,  

and if m E M, m~ is the image of m in Mx. 

DEFINITION 1. Let a e R, and let Z(a) = (x  ~ X(R) :  a~ = 0}. I f  Z(a) is a closed 

subset of  X(R) ,  a is zero-closed. I f  every a in R is zero-closed, R is zero-closed. 

By [10, (2.9), p. 87], Z(a) is open for all a in R. Thus a is zero-closed if and only 

if Z(a) = N(e)  for some idempotent e of  R. 

In the language of [7], R is zero-closed if and only if the Pierce sheaf on X ( R )  is 

Hausdorff. 

LEMMA 2. Let  b e R. Then  b is annihi lated by no non-zero idempotent  i f  

and only i f  Z(b) is empty.  

PROOF. I f  eb = 0 with e r 0, there is x e X ( R )  with ex = 1, so 0 = (eb)x = b~ 

and x E Z(b). Conversely, if  x ~ Z(b), by [10] there is e in x with e~ = i such that 

eb = O. 

PROPOSITION 3. An element  a o f  R is zero-closed i f  and only i f  a = eb where e 

is an idempotent  o f  R and b is annihi lated by no non-zero idempotent.  

PROOF. Let a be zero-closed, say Z(a) = N(e). Then ax = 0 if and only if 

e ~ =  1. L e t b  = a + e a n d l e t x e X ( R ) . I f x ~ Z ( a ) , b ~  e x =  l a n d i f x ( ~ Z ( a ) ,  

bx = ax ~ 0. So Z(b) is empty and, by Lemma 2, b is annihilated by no non-zero 

idempotent. Finally, we have ( 1 -  e)b = a: for ( 1 -  e)b = ( 1 -  e)a, and if 

x ~ Z(a), ((1 - e)a)x = 0 = a~ and i fx  ~ Z(a), ((1 - e)a)~ -- a~, so for all x ~ X(R) ,  

( ( 1 -  e))ax = ax. By [10, (2.9), p. 87], this means (1 - e)a -- a. 

Now suppose a = eb as in the statement of  the proposition. Since ey = 0 

implies ay = 0, N(1 - e) c Z(a). I f  ay = 0 and ey = 1, by = 0 so y ~ Z(b). Since 

Z(b) is empty, ay = 0 implies ey -- 0, and hence Z(a) = N(1 - e) is closed. 

We record some easy consequences of  the proposition. 

COROLLARY 4. Let  R be zero-closed and let T be a subring of  R containing all 

idempotents o f  R. Then  T is zero-closed. 

PROOF. Let a e T. As an element of  R, a -- eb where b is annihilated by no 

non-zero idempotent and e is an idempotent. By hypothesis, e e T, and by the 

proof  of  the proposition we may assume b = a § f,  f idempotent, so b e T. The 

proposit ion now impIies that a is zero-closed. 
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COROLLARY 5. Let (Ri} be a collection of zero-closed rings and let R = I I R  t. 

Then R is also zero-closed. 

PROOF. Let a = (a~) be in R. Write, using the proposition, as = e~b~, where 

el, b~ are as in the proposition. Then e = (ei) is an idempotent of R while b = (bi) 

is annihilated by no non-zero idempotent of R. Thus a = eb is zero-closed by the 

proposition. 

COROLLARY 6. l f  R is a von Neumann regular ring [7, p. 40], R is zero-closed. 

PROOF. Every element of R is an idempotent times a unit. (This corollary also 

follows from [7, (10.5), p. 43].) 

If  R is connected (that is, has no non-trivial idempotents), X(R) is a single 

point, so R is zero-closed. By Corollary 5, any product of connected rings is zero- 

closed. The next result adds to the collection of examples. 

LEMMA 7. Let R o be a topological ring whose only idempotents are zero 

and one. Let X be a topological space and let R = C(X, Ro) be the ring of all 

Ro-valued functions on X.  Then f e R  is zero-closed if and only if  f - l (O)  has a 

maximal open-closed subset. 

PROOF. First, let b e R. If b-  1(0) contains an open-closed subset U and e is the 

idempotent characteristic function of U then eb = 0, and if U is non-empty, 

e ~ 0. Conversely, if e is a non-zero idempotent and eb = 0, e- 1(1) is a non-empty 

open-closed subset of b-1(0). Thus b is annihilated by no non-zero idempotent 

if and only if b-l(0) contains no non-empty open-closed subsets. Now i f f e R  is 

zero-closed, by Proposition 3 f = eb where e is idempotent and b-1(0) has no 

non-empty open-closed subsets. Then f - l ( 0 )  = e - l (0 )w  b-l(0) has e-l(0) as a 

maximal open-closed subset. Conversely, suppose f-1(0) has U as maximal open- 

closed subset and let e be the characteristic function of U. Let b = f + e. Then 

b-l(0) c f - l ( 0 )  - U has no open-closed subsets. Also, we have (1 - e)b = f ,  and 

by the first part of the proof and Proposition 3, f is zero-closed. 

COROLLARY 8. I f  R o is a discrete topological ring with no idempotents except 

zero and one, and X is totally disconnected compact Hausdorff space, C(X, Ro) 

is zero-closed. 

PROOF. In this case all zero sets in X are open-closed. 

COROLLARY 9. A weakly uniform ring [-2, (2.3), p. 305] is zero-closed. 

PROOF. A weakly uniform ring is a finite product of rings of the type of Corollary 

8, and Corollary 5 gives the result. 
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COROLLARY 10. Let X be a totally disconnected compact Hausdorff topological 

space and R o the reals or complexes. Then C(X, Ro) is zero-closed if and only if 

X is basically disconnected [3, (1H), p. 22]. 

PROOF. A closed subset Y of X has a maximal open-closed subset if and only if 

the interior of Y is open-closed. The interiors of zero sets are closed if and only if 

the closure of cozero sets are open, and hence the result follows. 

It will be necessary to know in the subsequent discussion when a strongly 

separable algebra over a zero-closed ring is again zero-closed. Corollary 10 will 

be used to show that some hypothesis on the base is necessary. 

Let X be a totally disconnected compact Hausdorff space and let g be a con- 

tinuous real-valued function on X such that g- l(0)  is non-empty with empty 

interior. Let Y be the union of two copies X 1 and X2 of X with the images of  

g -  1(0) in X 1 and X2 identified. Y is also a compact, totally disconnected Hausdorff 

space. Let f be the continuous real-valued function on Y which agrees with g on 

X 1 and is zero on X 2. Then the interior o f f - l ( 0 )  is X2 - g-l(0)  which is not 

closed in Y. Specializing X and g properly will now give the desired example. 

EXAMPLE 11. Let X be the Stone-t~ech compactification of the discrete space 

of positive integers, and let g e C(X, R) be g(u) = 1/u for u a positive integer. Then 

g-~(0) = F is non-empty but has empty interior. Let Y be the space constructed 

as above. Let the cyclic group of order 2 act on C(Y, C) as follows: the non-identity 

automorphism o" acting on the function h is to be tr(h)(y) = h(y*) where y* is 

the element of Y in the other copy of X from y (or y itself if y e F) and (-)  denotes 

complex conjugation. The usual arguments show that the ring of invariants of 

C(Y,C) under this action is R = { f e C ( X , C ) : f ( x ) e R  for all x e F }  and that 

C(Y, C) is a Galois [1, (1.4), p. 20] extension of R. Since X is extremely discon- 

nected [-3, (6u), p. 96], it is basically disconnected [-3, (1H), p. 22] and C(X, C) is, 

by Corollary 10, zero-closed. By Corollary 4, R is zero-closed. But, by Corollary 

10 and the above discussion, C(Y,C) is not zero-closed. 

Because of Example 1i, we make the following definition. 

DEFINITION 12. R is extensionally zero-closed if every strongly separable 

R-algebra is zero-closed. 

PROPOSITION 13. The following rings are extensionally zero-closed: 

(i) Connected rings, 

(ii) yon Neumann regular rings, and 
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(iii) Weakly uniform rings. 

PROOF. ( i ) A  strongly separable algebra over a connected ring is a finite 

product of connected rings, hence zero-closed. 

(ii) A strongly separable algebra over a yon Neumann ring is again a yon 

Neumann ring, and hence zero-closed. 

(iii) A strongly separable algebra over a weakly uniform ring is again weakly 

uniform [6, (2.16), p. 118] and hence zero-closed by Corollary 9. 

PROPOSITION 14. Let {R~} be a collection of extensionally zero-closed rings. 

Then R = YIR i is extensionally zero-closed. 

PROOF. Let S be a strongly separable R-algebra. Since S is a finitely generated 

projective R-module, S = YI(S | Each S | R, is strongly separable over 

R i and hence zero-closed by hypothesis. Then S is zero-closed by Corollary 5. 

The connection between extensionally zero-closed rings and fixed rings of  

groups is given in the next result. 

PROPOSITION 15. Suppose R is extensionally zero-closed. Let S be a strongly 

separable R-algebra and let G be a group of R-algebra automorphisms of S. 

Then S ~ is a locally strongly separable R-algebra. 

PROOF. First, it will be shown that S can be taken to be weakly Galois over R 

in the sense of [10, (3.1), p. 90], for there is, by [8, p. 166], a weakly Galois 

R-algebra T with R c S c T. By [10, (3.12), p. 94], T is weakly Galois over S. 

Since T is a finitely generated projective R-module, (S | T) G = S~ | T, and 

hence we may replace R by T and S by S | T so that S is weakly Galois (note 

that T is still extensionally zero-closed). The remainder of the argument is ana- 

logous to that of [5, (3.12), p. 102]: for each a e G, there is a homomorphism 

S | S ~ S by s |  sa(t). Let Tr(a) be the image of X(S) in X (S  | S) under 

the induced continuous map. Since the kernel of the homomorphism is idempotent 

generated [6, (2.4), p. 114], an element a of S | S is in the kernel if and only if 

Tr(a) c Z(a). Thus s in S is in S ~ if and only if Tr(a) c Z(s | 1 - 1 | s) for all 

o'e G. Let H be the intersection of  all open-closed subgroupoids of  X ( S  @R S) 

[5, (I.8), p. 93] which contain Tr(o-) for all tre G. Since S | S is strongly separable 

over R, s @ 1 - 1 @ s is zero-closed for all s e S, and hence Z(s | 1 - 1 | s) is an 

open-closed subgroupoid of X ( S  @R S) for all s E S. Thus s e S ~ if and only if 

H ~ Z(s | 1 - 1 | s). Then by [5, (1.10), p. 95], S G = S n is locally strongly 

separable over R. 
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There is a weaker version of Proposition 15, which we state as a corollary. 

COROLLARY 16. Suppose R is zero-closed. Let S be a strongly separable 

R-algebra generated over R by idempotents, and let G be a group of R-algebra 

automorphisms of S. Then S ~ is a locally strongly separable R-algebra. 

PROOF. For each x in X(R),  Sx and (S |  S)x are isomorphic to a finite product 

of copies of R,. It is easy to see that S is a weakly Galois R-algebra. The argument 

of Proposition 15 will work in this case, once the following lemma is established. 

LEMMA 17. Let R be zero-closed and let T be an R-algebra such that for 

each x in X(R), T x is a finite product of copies of R~. Then T is zero-closed. 

PROOF. Let s ~ S, y ~X(S), and suppose sy ~ 0. Using the usual Boolean 

spectrum techniques on S~ where x = y n R, we can write s - - Ea i e  i where 

e,ej = 0 if i ~ j ,  the ei are idempotents of S, the a, are in R, and (alel)y ~ 0. By 

Proposition 3, a 1 -- f b  where f is an idempotent of R and b~ ~ 0 for all x in 

X(R). Then bz ~ 0 for all z ~X(S) also, and fy ~ 0 since (al)y ~ 0. Moreover, 

elfv~ 0 since ale 1 = e l fb  v~ O. Now let w ~ N ( f e l ) .  Then sw = (alel),, = bw ~ 0, 

and y ~ N( e l f )  c X(S) - Z(s). Thus Z(s) is closed. 

The next step is to establish the converses of Corollary 16 and Proposition 15. 

This requires some additional notation. 

DEFINmON 18. Let U be a subset of X(R). Then T(U) denotes the R-subalgebra 

of R x R generated by all pairs (0, a) such that U c Z(a). 

LEMMA 19. Let U be an open subset of X(R). Let G be the group of all 

R-algebra automorphisms of R • R fixing T(U). Then T(U) = (R • R) a. 

PROOF. Clearly T(U) c (R • R) ~ Suppose (e, d) ~ T(U). First, it will be shown 

that there is an x in U such that c~ ~ d,. For  T '  = {(c,d): Cx = d~ for all x ~ X }  

is an R-subalgebra of R x R which contains (0, a) for all a E R such that U c Z(a), 

so T(U) c T'. If  (c, d) ~ T',  U ~ Z(d - c), and hence (c, d) -- (c, c) + (0, d - c) 

is in T(U), so T(U) = T'. Now choose e such that x ~ N(e) c U, which can be 

done since U is open. Let a be the R-algebra automorphism of R x R which is the 

identity on (R x R) (1 - e) and the transposition on (R x R)e. Now if (a, b) is in T(U) 

and y ~ N(e) then ay = by so try((a , b))y = (a, b)y, while if  y r N(e), try = ly so 

trr((a, b)y) = (a, b)y again, and hence tr(a, b) = (a, b). Thus tr E G. But tr~((e, d))x 

=(dx, cx) # (c, d)~, so tr(c, d) ~ (c, d). Thus (c, d) ~ (R x R) ~, and the result follows. 

LEMMA 20. Let a e R. Then {x ~ X(R): T(Z(a))~ = Rx} -- Z(a). 
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PROOF. If  x ~ Z(a), then (0, b)x -- 0 if Z(a) c Z(b), and hence T(Z(a))x = R~. 

Conversely, if T(Z(a))~ = R~ then (0, a)~ = (0,0) and hence a~ = 0 so x ~ Z(a). 

The converse of  Corollary 16 is now available. 

PROPOSITION 21. Suppose that for every strongly separable R-algebra S 

generated over R by idempotents and every group G of R-algebra automorphisms 

of S, the algebra S ~ is locally strongly separable over R. Then R is zero- 

closed. 

PROOF. Let a e R. By Lemma 19 and the hypotheses, T(Z(a)) is a locally 

strongly separable R-algebra. For  x in X(R), T(Z(a))x is a strongly separable 

subalgebra of Rx x R~, and hence is either R~ or R~ x R~. By 110, (2.ll) ,  p. 88], since 

M =R x R/T(Z(a)) is a finitely generated R-module, F = {x e X(R):Mx = 0} is 

open. Thus X ( R ) -  F = {x: T(Z(a))~ = R~} is closed, and by Lemma 20, this 

means Z(a) is closed. 

This leads, finally, to the main result. 

THEOREM 22. The ring of invariants of every group of R-algebra auto- 

morphisms of every strongly separable R-algebra is locally strongly separable 

if and only if R is extensionally zero-closed. 

PROOF. If  R satisfies the first condition and R'  is a strongly separable R- 

algebra, then Proposition 21 applied to R'  •  (which is a strongly separable 

R-algebra) shows that R '  is zero-closed. The other half of the theorem is 

Proposition 15. 

The theorem can be regarded as a characterization of extensionally zero-closed 

rings, while Proposition 21 and Corollary 16 give the corresponding charac- 

terization of  zero-closed rings. 
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