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ABSTRACT

This paper gives a necessary and sufficient condition that the ring of invariants
of every group of automorphisms of every projective, separable, commutative
algebra over a given commutative ring is itself a union of separable, projective
subalgebras. Rings satisfying the condition include products of connected rings,
von Neumann regular rings, and some rings of functions.

Let R be a commutative ring and S a commutative, separable R-algebra, finitely
generated and projective as an R-module (that is, S is a strongly separable
R-algebra). Let G be a group of R-algebra automorphisms of S, and consider the
ring S¢ of elements of S invariant under G. This paper studies the separability
properties that S inherits from S.

If G is finite, by [4, (0.9), p. 709], S¢ is a separable R-algebra, and if R has only
finitely many idempotents then by [9, (1.3), p. 723] G must be finite. Thus we are
mainly concerned with the case where R has infinitely many idempotents, and we
are looking for a necessary and sufficient condition on R such that for every S
and G as above, S¢ is a direct limit of strongly separable subalgebras, that is, a
locally strongly separable algebra.

The condition, stated in Theorem 22, is essentially that the Pierce sheaf [7, (4.4),
p. 17] of every strongly separable R-algebra is a HausdorfT topological space. We
do not deal explicitly with the Pierce sheaf here, however, but with the purely
algebraic description of it given in [10]; the forementioned condition will also be
phrased purely algebraically.

We use the conventions of [5] throughout: all rings and algebras are com-
mutative, with R the generic base ring. X(R) is the space of connected components
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of Spec (R); elements of X(R) are maximal ideals in the Boolean ring of idempotents
of R and the basic open-closed sets of X(R) are the sets N(e) = {xe X(R): 1—eex},
where e is an idempotent of R. If x € X(R) and M is an R-module, M,= M [Mx,
and if m e M, m,, is the image of m in M,.

DEeFINITION 1. Let a € R, and let Z(a) = {x € X(R): a, = 0}. If Z(a) is a closed
subset of X(R), a is zero-closed. If every a in R is zero-closed, R is zero-closed.

By [10, (2.9), p. 87], Z(a) is open for all a in R. Thus a is zero-closed if and only
if Z(a) = N(e) for some idempotent ¢ of R.

In the language of [7], R is zero-closed if and only if the Pierce sheaf on X(R) is
Hausdorff.

LemMAa 2. Let beR. Then b is annihilated by no non-zero idempotent if
and only if Z(b) is empty.

Proor. If eb = 0 with e # 0, there is x € X(R) with e, = 1, 50 0 = (eb), = b,
and x € Z(b). Conversely, if x € Z(b), by [10] there is e in x with e, = 1 such that
eb = 0.

PROPOSITION 3. An element a of R is zero-closed if and only if a = eb where e
is an idempotent of R and b is annihilated by no non-zero idempotent.

Proor. Let a be zero-closed, say Z(a) = N(e). Then a, = 0 if and only if
e, = 1. Let b = a+eandlet xe X(R). If xeZ(a), b, = e, = 1 and if x ¢ Z(a),
b, = a, # 0. So Z(b) is empty and, by Lemma 2, b is annihilated by no non-zero
idempotent. Finally, we have (1 —e)b = a: for (1 —e)b = (1 — €)a, and if
xe€Z(a),((1 — e)a), = 0 = a, and if x ¢ Z(a), (1 — e)a), = a,, so for all x € X(R),
((1-e)a, = a,. By [10, (2.9), p. 87], this means (1 — e)a = a.

Now suppose a = eb as in the statement of the proposition. Since e,=0
implies a, = 0, N(1 — e) < Z(a). If a, = 0 and e, =1, b, = 0s0 yeZ(b). Since
Z(b) is empty, a, = 0 implies e, = 0, and hence Z(a) = N(1 — e) is closed.

We record some easy consequences of the proposition.

COROLLARY 4. Let R be zero-closed and let T be a subring of R containing all
idempotents of R. Then T is zero-closed.

PrOOF. Let aeT. As an element of R, a = eb where b is annihilated by no
non-zero idempotent and e is an idempotent. By hypothesis, e T, and by the

proof of the proposition we may assume b = a + f, f idempotent, so b T. The
proposition now implies that a is zero-closed.
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COROLLARY 5. Let {R;} be a collection of zero-closed rings and let R=IIR,.
Then R is also zero-closed.

PrROOF. Let a = (a;) be in R. Write, using the proposition, a; = e;b;, where
e;, b; are as in the proposition. Then e = (¢,) is an idempotent of R while b = (b))
is annihilated by no non-zero idempotent of R. Thus a = eb is zero-closed by the
proposition.

COROLLARY 6. If R is a von Neumann regular ring [7, p. 40], R is zero-closed.

ProOOF. Every element of R is an idempotent times a unit. (This corollary also
follows from [7, (10.5), p. 43].)

If R is connected (that is, has no non-trivial idempotents), X(R) is a single
point, so R is zero-closed. By Corollary 5, any product of connected rings is zero-
closed. The next result adds to the collection of examples.

LeMMA 7. Let R, be a topological ring whose only idempotents are zero
and one. Let X be a topological space and let R = C(X,R,) be the ring of all
Ry-valued functions on X. Then feR is zero-closed if and only if f~*(0) has a
maximal open-closed subset.

ProorF. First, let be R. If b~*(0) contains an open-closed subset U and e is the
idempotent characteristic function of U then eb = 0, and if U is non-empty,
e # 0. Conversely, if e is a non-zero idempotent and eb = 0, e~'(1) is a non-empty
open-closed subset of b~(0). Thus b is annihilated by no non-zero idempotent
if and only if b~1(0) contains no non-empty open-closed subsets. Now if fe R is
zero-closed, by Proposition 3 f = eb where e is idempotent and b~'(0) has no
non-empty open-closed subsets. Then f~(0) = e~ !(0) U b~'(0) has e~*(0) as a
maximal open-closed subset. Conversely, suppose f~!(0) has U as maximal open-
closed subset and let e be the characteristic function of U. Let b = f+ e. Then
b-1(0) = f~1(0) — U has no open-closed subsets. Also, we have (1 — e)b = f, and
by the first part of the proof and Proposition 3, fis zero-closed.

COROLLARY 8. If R, is a discrete topological ring with no idempotents except
zero and one, and X is totally disconnected compact Hausdorff space, C(X, Ry)
is zero-closed.

ProoF. In this case all zero sets in X are open-closed.

COROLLARY 9. A weakly uniform ring [2, (2.3), p. 305] is zero-closed.

PROOF. A weakly uniform ring is a finite product of rings of the type of Corollary
8, and Corollary 5 gives the result.
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CoROLLARY 10. Let X be a totally disconnected compact Hausdorff topological
space and R, the reals or complexes. Then C(X, Ry) is zero-closed if and only if
X is basically disconnected [3, (1H), p. 22].

PrROOF. A closed subset Y of X has a maximal open-closed subset if and only if
the interior of Y is open-closed. The interiors of zero sets are closed if and only if
the closure of cozero sets are open, and hence the result follows.

It will be necessary to know in the subsequent discussion when a strongly
separable algebra over a zero-closed ring is again zero-closed. Corollary 10 will
be used to show that some hypothesis on the base is necessary.

Let X be a totally disconnected compact Hausdorff space and let g be a con-
tinuous real-valued function on X such that g—!(0) is non-empty with empty
interior. Let Y be the union of two copies X, and X, of X with the images of
g~ 1(0)in X, and X, identified. Y is also a compact, totally disconnected Hausdorff
space. Let f be the continuous real-valued function on Y which agrees with g on
X, and is zero on X,. Then the interior of f~!(0) is X, — g~*(0) which is not
closed in Y. Specializing X and g properly will now give the desired example.

ExaMpPLE 11. Let X be the Stone-Cech compactification of the discrete space
of positive integers, and let g € C(X, R) be g(u)=1/u for u a positive integer. Then
g~ '(0) = F is non-empty but has empty interior. Let Y be the space constructed
as above. Let the cyclic group of order 2 act on C(Y, C) as follows: the non-identity
automorphism ¢ acting on the function h is to be o(h)y) = h(y*) where y* is
the element of Y in the other copy of X from y (or y itself if y € F) and (7) denotes
complex conjugation. The usual arguments show that the ring of invariants of
C(Y,C) under this action is R = {fe C(X,C): f(x)eR for all xeF} and that
C(Y,C) is a Galois [1, (1.4), p. 20] extension of R. Since X is extremely discon-
nected [3, (6u), p. 96], it is basically disconnected [3, (1H), p. 22] and C(X,C) is,
by Corollary 10, zero-closed. By Corollary 4, R is zero-closed. But, by Corollary
10 and the above discussion, C(Y,C) is not zero-closed.

Because of Example 11, we make the following definition.

DerINITION 12. R is extensionally zero-closed if every strongly separable
R-algebra is zero-closed.

PROPOSITION 13. The following rings are extensionally zero-closed:

(i) Connected rings,
(ii) von Neumann regular rings, and



310 A.R. MAGID Israel J. Math.,
(iit) Weakly uniform rings.

ProoF. (i) A strongly separable algebra over a connected ring is a finite
product of connected rings, hence zero-closed.

(ii) A strongly separable algebra over a von Neumann ring is again a von
Neumann ring, and hence zero-closed.

(iii) A strongly separable algebra over a weakly uniform ring is again weakly
uniform [6, (2.16), p. 118] and hence zero-closed by Corollary 9.

ProOPOSITION 14. Let {R;} be a collection of extensionally zero-closed rings.
Then R = IR, is extensionally zero-closed.

PrROOF. Let S be a strongly separable R-algebra. Since S is a finitely generated
projective R-module, S = II(S ®;z R,). Each S ®;R, is strongly separable over
R; and hence zero-closed by hypothesis. Then S is zero-closed by Corollary 5.

The connection between extensionally zero-closed rings and fixed rings of
groups is given in the next result.

PROPOSITION 15. Suppose R is extensionally zero-closed. Let S be a strongly
separable R-algebra and let G be a group of R-algebra automorphisms of S.
Then S¢ is a locally strongly separable R-algebra.

ProoF. First, it will be shown that S can be taken to be weakly Galois over R
in the sense of [10, (3.1), p. 90], for there is, by [8, p. 166], a weakly Galois
R-algebra T with R < S < T. By [10, (3.12), p. 94], T is weakly Galois over S.
Since T is a finitely generated projective R-module, (S ®x T)¢ = S® ®, T, and
hence we may replace R by T and Sby S ®z T so that S is weakly Galois (note
that T is still extensionally zero-closed). The remainder of the argument is ana-
logous to that of [5, (3.12), p. 102]: for each ¢ € G, there is a homomorphism
S®rS—S by s®t - so(f). Let Tr(g) be the image of X(S) in X(S ® S) under
the induced continuous map. Since the kernel of the homomorphism is idempotent
generated [6, (2.4), p. 114], an element a of S ®, S is in the kernel if and only if
Tr(s) < Z(a). Thus s in S is in S¢ if and only if Tr(6) € Z(s ® 1 — 1 ® s) for all
oeG. Let H be the intersection of all open-closed subgroupoids of X(S ®3S)
[5, (1.8), p. 93] which contain Tr(s) for all ¢ € G. Since S ® ¢ Sis strongly separable
over R, s® 1 — 1 ®s is zero-closed for all s€ S, and hence Z(s ® 1 — 1 ® s) is an
open-closed subgroupoid of X(S®yS) for all seS. Thus se SY if and only if
H<Z(s®1—1®s). Then by [5, (1.10), p. 95], S = S# is locally strongly
separable over R.
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There is a weaker version of Proposition 15, which we state as a corollary.

COROLLARY 16. Suppose R is zero-closed. Let S be a strongly separable
R-algebra generated over R by idempotents, and let G be a group of R-algebra
automorphisms of S. Then S€ is a locally strongly separable R-algebra.

ProOF. Foreach x in X(R), S, and (S ®g S), are isomorphic to a finite product
of copies of R,. It is easy to see that S is a weakly Galois R-algebra. The argument
of Proposition 15 will work in this case, once the following lemma is established.

LeMMA 17. Let R be zero-closed and let T be an R-algebra such that for
each x in X(R), T, is a finite product of copies of R,. Then T is zero-closed.

ProOF. Let seS, yeX(S), and suppose s, # 0. Using the usual Boolean
spectrum techniques on S, where x = y "R, we can write s = Zae; where
ee; = 0if i # j, the ¢; are idempotents of S, the a; are in R, and (a,e,), # 0. By
Proposition 3, a; = fb where f is an idempotent of R and b, # 0 for all x in
X(R). Then b, # 0 for all ze X(S) also, and f, # 0 since (a,), # 0. Moreover,
e f# 0since aje; = e fb # 0. Now let we N(fe,). Then s, = (a;e,),, = b,, # 0,
and y e N(e, f) = X(S) — Z(s). Thus Z(s) is closed.

The next step is to establish the converses of Corollary 16 and Proposition 15.
This requires some additional notation.

DerFiniTION 18, Let U be a subset of X(R). Then T(U) denotes the R-subalgebra
of R x R generated by all pairs (0, a) such that U < Z(a).

LeMMmAa 19. Let U be an open subset of X(R). Let G be the group of all
R-algebra automorphisms of R x R fixing T(U). Then T(U) = (Rx R)%.

Proor. Clearly T(U) < (R x R)®. Suppose (¢, d) ¢ T(U). First, it will be shown
that there is an x in U such that ¢, # d,. For T’ = {(¢,d): ¢, = d, for all x € X}
is an R-subalgebra of R x R which contains (0, ) for all g € R such that U < Z(a),
so TW)<= T If (¢,d)e T', U< Z(d — ¢), and hence (c,d) = (c,¢) +(0,d — ¢)
is in T(U), so T(U) = T'. Now choose e such that x € N(e) = U, which can be
done since U is open. Let ¢ be the R-algebra automorphism of R X R which is the
identity on (R x R) (1 —e) and the transposition on (R x R)e. Now if (a, b) is in T(U)
and ye N(e) then a, = b, so a,((a,b)), = (a,b),, while if y¢N(e), o, =1, so
o,((a, b),) = (a,b), again, and hence o(a, b) = (a, b). Thus o€ G. But ¢,((c, d)),
=(d,, c,) # (c, d),, so o(c, d) # (c,d). Thus (c, d) ¢ (R x R)°, and the result follows.

LeMMA 20. Let aeR. Then {xeX(R): T(Z(a)), = R} = Z(a).
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Proor. If x € Z(a), then (0,b), = 0 if Z(a) < Z(b), and hence T(Z(a)), = R,.
Conversely, if T(Z(a)), = R, then (0,a), = (0,0) and hence a, = 0 so x € Z(a).
The converse of Corollary 16 is now available.

PROPOSITION 21. Suppose that for every strongly separable R-algebra S
generated over R by idempotents and every group G of R-algebra automorphisms

of S, the algebra S® is locally strongly separable over R. Then R is zero-
closed.

ProoF. Let aeR. By Lemma 19 and the hypotheses, T(Z(a)) is a locally
strongly separable R-algebra. For x in X(R), T(Z(a)), is a strongly separable
subalgebra of R, x R,, and hence is either R or R, x R,. By [10, (2.11), p. 88], since
M =R x R [T(Z(a)) is a finitely generated R-module, F = {xe X(R): M, = 0} is
open. Thus X(R) — F = {x: T(Z(a)), = R,} is closed, and by Lemma 20, this
means Z(a) is closed.

This leads, finally, to the main result.

THEOREM 22. The ring of invariants of every group of R-algebra auto-

morphisms of every strongly separable R-algebra is locally strongly separable
if and only if R is extensionally zero-closed.

Proor. If R satisfies the first condition and R’ is a strongly separable R-
algebra, then Proposition 21 applied to R’ x R’ (which is a strongly separable
R-algebra) shows that R’ is zero-closed. The other half of the theorem is
Proposition 15.

The theorem can be regarded as a characterization of extensionally zero-closed

rings, while Proposition 21 and Corollary 16 give the corresponding charac-
terization of zero-closed rings.
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